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Abstract

One-Dimensional Turbulence (ODT) is a single-column simulation in
which turbulent vertical transport is repesented by an unsteady advective
process, rather than its customary representation by a diffusive process. The
salient feature of ODT with reference to simulation of the atmospheric bound-
ary layer (ABL) is that it resolves fine-grained unsteady motions and transport
processes. The ODT representation of episodic turbulent bursts that occur
under stongly stable conditions would be a promising topic for future research.

1 Introduction

One-Dimensional Turbulence (ODT) is a turbulence simulation model formulated
on a one-dimensional (1D) spatial domain. In an ABL context, it is a form of single-
column modeling. There are several important differences between ODT and other
single-column models. Because of this, and because ODT has not previously been
applied to ABL modeling, a brief description of the method and of results for the
GABLS arctic stable boundary layer intercomparison case are provided here. The
description is not intended to be self-contained because details are provided in cited
publications.

In previous applications (but not in the present application), the 1D domain
resolves molecular-transport processes (viscosity, heat transport, mass transport,
etc.). Turbulent transport, which is usually modeled as a coarse-grained diffusive
process, is represented in ODT by a random sequence of rearrangements (mathemat-
ically, mappings) applied to randomly selected intervals of the 1D domain. These



rearrangements may be viewed as the model analog of turbulent eddies, and are
therefore termed eddies or eddy events.

The mapping that represents a turbulent eddy is defined so as to emulate the key
attributes of turbulent eddies: overturning motion and compression that amplifies
property gradients. It may be viewed as an idealization of the effect of a notional
turbulent eddy on property profiles along a 1D line of sight.

The times of occurrence, locations, and spatial extents of eddy events in ODT are
randomly sampled; the physics governing the spatiotemporal structure of turbulence
is incorporated through the mathematical relations that determine the likelihood of
particular eddy characteristics as a function of the instantaneous flow state. These
relations are based on familiar, well established mixing-length phenomenology. This
application of mixing-length concepts is closer in principle to the underlying physics
than mixing-length applications to coarse-grained formulations involving spatial,
temporal, or ensemble averaging. Though strictly speaking, the mixing-length rela-
tions used in ODT are parameterizations, their adherence to the physics governing
local, time-resolved evolution results in a particularly simple, robust formulation
involving minimal parameter adjustment. Numerous applications supporting this
characterization have been reported in the literature, e.g., [1, 2, 3].

In Sec. 2, the ODT formulation applied here to the GABLS intercomparison case
is briefly described. The description is intended to summarize the present formula-
tion with emphasis on differences from previous formulations. A new feature is that
molecular transport processes are not resolved in this application. Rather, viscos-
ity is assigned a value that phenomenologically represents near-surface roughness
effects. This assignment, an assumed value of the turbulent Prandtl number, and
assignment of another parameter that controls the von Karman constant, are the
only empirical inputs other than the physical setup and parameters specified for the
intercomparison.

2 One-dimensional model

2.1 Time advancement

ODT single-column simulations of the ABL evolve vertical profiles of velocity com-
ponents, u, v, and w, and potential temperature, §. Each profile depends on time
t and the vertical coordinate z. This evolution involves two processes: eddy events,
causing instantaneous modifications of these profiles, and intervening time advance-
ment of conventional form.

The time advancement between eddy events is governed by

(8 — v02) u(z,t) = f (v(z,t) — V) (1)

(8: — v32) v(z,t) = —f (u(z,t) — U) (2)



(8: — v02) w(z,t) =0 (3)

(at — 782) 6(z,t) = 0. (4)
Here v is viscosity, v is thermal diffusivity, f is the coriolis parameter, and U, and
V, are the geostrophic winds. These equations are solved within a closed domain
of height A. Boundary conditions applied to the velocity at the surface (z = 0) are
u(z = 0) =v(z =0) = w(z = 0) = 0 and at the top (z = A) are u(z = A) = U,
v(z =A) =V,, and w(z = A) = 0. As an initial condition, the potential temperature
at the ground is 6(z = 0,t = 0) = 6,. However, the ground temperature cools
at a constant rate 6y, so that the bottom boundary condition evolves as 6(z =
0,t) = 6, — 0,t. The potential temperature at the top is fixed at all times at
6(z = A) = 6, + Af. Parameter values, spatial resolution, and initial profiles for the
intercomparison case are discussed in Secs. 2.4 and 3.

2.2 Eddy definition

The basic element of the model is the advective mapping. It consists of a measure-
preserving map M(z) of the domain onto itself, so that any scalar ¥(z) under-
goes the transformation ¢(z) — ¥(M(z)) when acted on by the map. Measure-
preservation, the one-dimensional equivalent of incompressibility, implies conserva-
tion of all scalars. The mapping acts on a segment of length /, from position z, to
2o + I. The selection of values of z, and [ for a particular mapping is discussed in
Sec. 2.3. (Here, 2z, is an arbitrary height, not the roughness height introduced in
Sec. 2.4.)

The mapping is loosely interpreted as representing the effects of a turbulent eddy
of size [ on the scalar fields in the corresponding z interval. All four scalar quantities
are mapped to mimic the transport of fluid elements. The particular mapping
function is arbitrary, but a piecewise-linear function is chosen as a convenient way
to satisfy the requirements of measure-preservation and finite extent. As in all
previous ODT work, a three-piece function which takes the line segment, shrinks it
to a third of its original length, and then places three copies on the original domain,
is used. The middle copy is reversed, so that the mapped field ¥(M (z)) is continuous
if 1(z) is continuous. The mapping function reduces to the identity map M(z) = z
outside of the mapped interval.

The rearrangement of the potential-temperature field by the mapping alters the
total potential energy, but the mapping itself leaves the total kinetic energy un-
changed. To enforce energy conservation, a function of specified form is added to
each velocity scalar whenever an eddy occurs. The fluid displacements induced by
the mapping are K(z) = z — M(z); this is a natural candidate for the energy ex-
change function, and is mathematically convenient. This function is non-zero only
within the mapped region. Under the action of an eddy, the potential temperature
and velocity fields undergo the transformations

0(z) — O(M(z)) (5)
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z)) + cuK(2)
z)) + v K(2)
w(z) = w(M(z)) + cpK(2).

The amplitudes c; of the energy exchange terms ¢; K(z) are determined for each eddy
individually to achieve both total energy conservation and an exchange of energy
among velocity components. The exchange of energy is the ODT implementation
of the return-to-isotropy phenomenology that is commonly introduced in Reynolds-
averaged models of turbulent shear flow. The incorporation of this phenomenology
into ODT is discussed further in [1]. The use of the function K(z) to enforce
energy conservation in buoyant stratified flow was introduced in [2]. The present
formulation uses K(z) for both purposes, reflecting the combination of shear and
buoyancy forcing that governs ABL evolution.

To calculate ¢;, the procedure of [1] is generalized to include buoyancy. The

energy-equipartition assumption (¢ = 1/3 in the notation of that reference) is
adopted in the energy-exchange submodel. The amplitudes are then
27 1 89l Ok
Cu:4—l(—UKZE\§<U%<+U%<+U)%{—2—7TO)) (6)

Lo =

89[9}{
L 2 2 2 _ °9UK
Cy 1 ( Vg \ <uK+vK+wK o7 To))

27 1 89l Ok
_ A + | = y2 2 2 _ 99 UK
Cu 1 ( Wg J3 <uK+vK+wK o7 To))

sk = % / j"“ s(2)(l = 2z — 2))dz (7)

is a function of any scalar field, and 7, is a reference potential temperature. Sub-
stitution of these constants into Eq. 5 results in conservation of the total energy,

with equipartition of the available energy (defined in [1]) among the three velocity
scalars.

where

2.3 Eddy selection

The final ingredient required in the model is a procedure to determine the time
sequence of eddy events and the parameters z, and [ for each event. A statistical
procedure is employed that involves random sampling from an eddy rate distribution,
here assumed to be of the form

O | (ukl)®  (vkl\®  (wxl)®  8gl3 Ok
A‘FJ(T)*(T)* v ) “amAT, 7 ®)




This expression involves two free parameters, C' and Z, whose roles in the present
context are explained in Sec. 2.4.

The cited references explain the physical motivation for the assumed form and
way that this distribution is used to sample eddy events. Here it is noted that the
argument of the square root is a quantity interpreted as a normalized measure of
the total energy available to drive a particular eddy event, reduced by an amount
Z whose role is explained in Sec. 2.4.

If two of the three velocity components are removed from the model, Eq. 8
reduces to the eddy rate distribution used in [2]. If the buoyancy term is omitted,
Eq. 8 resembles the expression for A that appears in [1], except that here, X is
based on the total available energy (including contributions from all three velocity
components) rather than the available energy associated with vertical motion. Use
of the total available energy is advantageous here because it gives the correct critical
Richardson number. Another distinction from [1] is that the procedure that was used
previously to suppress occasional unphysically large eddy events is omitted here. For
the present application, the stable stratification suffices to prevent such anomalies.

2.4 Application to the ABL

Because molecular transport processes are negligible away from the near-surface re-
gion, it is unnecessary (and unaffordable, even in 1D) to resolve them throughout
the vertical extent of the ABL. In fact, they need not be resolved near the surface
either, because there they are dominated by roughness effects. Therefore the vis-
cosity v is used here as a free parameter that is adjusted to provide an empirical
representation of surface roughness.

The adjustment is based on the near-surface boundary-layer structure that is
resolved by ODT. If v is taken to be the molecular viscosity, then the ODT simulation
is a fully resolved representation of near-wall dynamics. If this representation is
accurate, then the ODT mean velocity profile should capture the viscous, buffer,
and log layers respectively. ODT simulations of channel and Couette flow do in
fact reproduce this structure, and quantitatively accurate results are obtained by
adjustment of the parameters C' and Z in Eq. 8.

The empirical representation of roughness is based on the respective roles of C
and Z in Eq. 8. Z determines a threshold Reynolds number for eddy turnover. (If
the quantity under the square root is negative, the eddy event is disallowed.) In a
boundary layer, Z controls the viscous suppression of near-wall eddies, and thus the
extent of the buffer layer. C' scales the overall event rate and thus the turbulence
intensity. Therefore the choice of C directly affects turbulent transport in the log
layer, and indirectly affects the viscous and buffer layers through the interactions
among layers. The net effect is that the von Karman constant x increases with
increasing C.

In this context, roughness is modeled as a viscosity enhancement. Namely, the
mean velocity m = ((u)?+ (v)?)/? is required to obey viscous scaling, m/u, = z/z,



from z = 0 to the roughness height z,. (Here, u, and z, are based on m(z) rather
than u(z), consistent with conventions specified for the intercomparison.) The vis-
cosity v is adjusted to satisfy this requirement. In this application, v is thus an
effective viscosity representing roughness effects rather than the molecular viscos-
ity. (Implementation of this procedure for the intercomparison case is discussed in
Sec. 3.1.) For the value zp = 0.1m used in the intercomparison, this height exceeds
the extent of the buffer layer that would appear in the boundary layer above a flat
wall, so it is assumed that buffer-layer effects are subsumed within the roughness-
dominated region. For this reason, Z is set equal to zero. For Couette flow with
Z = 0, ODT mean velocity profiles transition from viscous to log scaling over a
short y, interval, with no inflection point (in semilog coordinates). Log scaling with
k = 0.4 is obtained for C = 0.93. Accordingly, the parameter values Z = 0, C' = 0.93
are used for ODT simulation of the intercomparison case.

The Prandtl number of air is 0.7. Turbulent heat transfer studies indicate that
this is also a reasonable value for the turbulent Prandtl number, so « in Eq. 4 is
assigned the value v/0.7.

The initial and boundary conditions of the ODT simulation are as specified for
the intercomparison, except that the initial u profile has a linear ramp from z = 0
to z = 4m to avoid possible numerical problems resulting from extremely high local
shear near z = 0.

2.5 Non-dimensionalization

To render the ODT model in non-dimensional form for numerical simulation, it is
necessary to rescale the length, time, velocity, and potential temperature variables
by reference values. The obvious reference length scale is the domain height A. The
dimensionless position z’' and eddy size I’ are defined by 2’ = z/A and I' = [/A.
Time is rescaled in terms of the time scale for viscous smoothing of domain-scale
structures: #' = tv/A?. These choices result in dimensionless velocities that are like
Reynolds numbers and a dimensionless gravity parameter that is like a Rayleigh
number.

The velocities are defined in units of 2'/¢": v’ = CuA/v, and likewise for v and
w. The inclusion of C' in the dimensionless velocity is shown below to collapse the
parameter dependence of the non-dimensional formulation into a single term. The
time evolution equation for the velocity fields become
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where f' = A%f/v and U, = CU,A/v, etc. A dimensionless potential temperature
is defined to vary between 0 and 1 initially:

! (9 - 90)
= . 1
0 AD (10)
The dimensionless potential temperature evolves according to
06’ 1 0%¢
- 11
ot Prdz? (11)

where Pr = v/ is the Prandtl number. The boundary value at 2’ = 0 is given by
6'(0,¢") = —@'t' where 6' = A%0,/vAf.
The rescaled eddy rate distribution is

N = 2y ()" + (10i)” + (w)” — g™ — ZC* (12)
where the dimensionless gravity is ¢’ = 85721903’;3 g. The dimensionless measure of

velocity and density fluctuations is

s = —— /ZHII dz's' (21" — 2(z' = 2))). (13)
K=o J, °

where s denotes u, v, w, or §. The ODT model now contains a single intrinsic
parameter ZC?, as well as the physical control parameters ¢, Pr, f', ¢, U, and
V,. As noted in Sec. 2.4, Z and therefore Z(C? are set equal to zero in the ABL
application of ODT. C nevertheless affects the computed results for a given case (e.g.,
through the C' dependence of ) because C appears in the definition of dimensionless
velocities.

3 Results for the intercomparison case

3.1 Viscosity adjustment

As explained in Sec. 2.4, the viscosity used in ODT simulation of the intercomparison
case is chosen so that the mean horizontal velocity obeys viscous scaling, m/u, =
z/z, for z < zp, where zp = 0.1m is the roughness height for the intercomparison
case. For the ODT parameter values C' = 0.93 and Z = 0 used to simulate this
case (see Sec. 2.4), this condition is satisfied for v = 0.02m?/s, which is therefore
the viscosity value used for this application.

Figure 1 shows a portion of the wall-scaled mean velocity profile based on the
last hour of simulation. To resolve the viscous layer sufficiently so that the numerical
simulation closely approximates the continuum limit, a mesh spacing of 0.025m is
used, requiring 16000 mesh points to span the 400m domain height. For larger v, a
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Figure 1: Near-wall mean horizontal velocity based on the final hour of simulation
(+), compared to viscous scaling (solid).

coarser mesh would provide adequate resolution. In the present context, variation
of v would provide an indication of roughness-height sensitivity.

The plot demonstrates viscous scaling up to four mesh spacings above the surface,
corresponding to the target value zp = 0.1m. The plot also indicates that the
simulation resolves z, = 0.4.

To assess the effect of running the simulation with larger v on a coarser mesh, a
case was run with v = 1m?/s on a 200-cell mesh. The ABL grew much too rapidly.
For v this large, viscous momentum transfer (in effect, eddy viscosity) dominates
transport by ODT eddy events. ODT simulation on a mesh this coarse requires
a more sophisticated determination of v than simply assigning a constant value.
Namely, low-resolution ODT simulation of the ABL would require an eddy-viscosity
closure analogous to closures used in LES. Development of this approach would be a
worthwhile undertaking but has not yet been pursued. Here, the choice v = 0.02m?/s
has little apparent effect on simulated ABL evolution beyond the viscous layer, other
than its essential role as the mechanism of kinetic-energy dissipation. For this v
value, velocity fluctuations are adequately resolved on the 16000-cell mesh. Thus,
v = 0.02m?/s is sufficiently dissipative without contributing significantly to total
transport (except in the near-wall region).

3.2 Mean profiles

The output files for the intercomparison provide the first two hundred points above
z = 0 at full resolution (0.025m), and points above that averaged in groups of 100.
All profiles shown here are averaged over the last hour of simulation.
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Figure 2: Mean horizontal velocity in wall coordinates (curve), compared to log
scaling with k = 0.4 (line segment).

Figure 2 shows the mean horizontal velocity plotted in wall coordinates. A line
segment corresponding to log scaling with k = 0.4 is shown for comparison. The
short duration of the simulation and effects of transient evolution may cause the log
scaling to be less precise than for simulations of statistically steady confined flows.
Nevertheless, consistency with x = 0.4 is apparent.

Figure 3 shows the vertical profile of the mean u velocity. The jet at the top
of the ABL is evident. The velocity at the surface appears to be greater than zero
because the near-wall high-gradient region is not discernible in this format. Models
lacking the spatial resolution and/or physical mechanisms required to simulate the
near-surface flow may not capture large near-surface increments of velocity and other
properties.

The normalized Ekman spiral based on the mean velocities is shown in Figure 4
and the mean potential temperature is shown in Figure 5. Instantaneous profiles are
are also shown in Figure 5 to illustrate structural variability during the simulations
and to highlight the large near-surface gradients.

3.3 Fluctuation profiles

Vertical profiles of selected fluctuation statistics are shown in Figures 6-8. Despite
the vertical binning over most of the domain (see Sec. 3.2), the profiles are noisy.
This reflects the fact that the ODT is an unsteady simulation capturing individual
eddy motions, like LES, but is 1D and therefore involves no horizontal averaging,
like other SCMs. Despite the variability, precision is sufficient, as indicated by
comparison to the previous averaging period (not shown here).
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Figure 4: Normalized Ekman spiral.
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Figure 5: Vertical profiles of mean potential temperature and of instantaneous po-
tential temperature at the beginning and end of the averaging period (displaced
upward 100m).

The only property that is noise-dominated is total transport in Figure 8. Com-
parison to the previous averaging period and to test cases indicates that the vertical
profile of total transport, gathered from a sufficiently large ensemble of simulated re-
alizations, would be negligible compared to the dominant budget terms when plotted
in this format.

Near the surface, fluctuations properties are similar to results previously reported
for channel flow [3], with minor differences due to the differences in parameter values
and in some details of the model formulation (Sec. 2). In particular, total transport
is non-negligible near the wall but it is adequately resolved there. (One hour is suf-
ficient averaging time for near-wall statistics because the time scale of the dominant
near-wall eddies is shorter than than dominant time scale away from the wall.) The
production and dissipation profiles attain much larger values (off scale in Figure
8) near the wall than in LES [4] because they transition in ODT from dependence
on bulk parameters (u. and f) to dependence on wall parameters (u. and v). The
near-wall structure is physically correct, as indicated by previous [3] comparisons to
direct-numerical-simulation results.

3.4 Data omissions

In the data files, vertical velocity skewness is omitted because ODT does not provide
a physically correct representation of high-order vertical-velocity statistics. It never-
theless yields reasonable vertical fluxes (Figure 7) because these fluxes are based on
advective motions occurring in ODT (eddy events) rather than the nominal vertical
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Figure 6: Velocity variances scaled by u2: (u?) (solid), (v?) (dash), (w?) (dot-dash).
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Figure 7: Vertical fluxes scaled by u?: {(uw) (solid), (vw) (dash).
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Figure 8: TKE budget terms scaled by u2f: production (solid; positive), dissipation
(solid; negative), buoyant production (dash), total transport (points).

velocity profile, which does not advect fluid [1].

TKE storage is omitted because the TKE budget is obtained by assuming that
the averaging period corresponds to statistically steady evolution, so by definition
there is no time evolution of any statistical property. (There are neither horizontal
coordinates nor, presently, an ensemble of realizations that would allow the time
evolution of statistical properties to be quantified.)

The time-series file omits the boundary-layer height because this quantity has
poor statistical properties in the absence of averaging over horizontal coordinates.
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